<table>
<thead>
<tr>
<th>Outline Concept</th>
<th>Segment</th>
<th>Duration</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welcome</td>
<td>Welcome and Introduction</td>
<td>2 mins</td>
<td>Dan</td>
</tr>
<tr>
<td>Basic Concepts</td>
<td>Caveman – DNSSEC 5000BC</td>
<td>3 mins</td>
<td>Dan</td>
</tr>
<tr>
<td></td>
<td>DNS Basics</td>
<td>5 mins</td>
<td>Dan</td>
</tr>
<tr>
<td></td>
<td>DNS Chain of Trust - Live</td>
<td>5 mins</td>
<td>Dan</td>
</tr>
<tr>
<td>Core Concepts</td>
<td>DNSSEC – How it works</td>
<td>10 mins</td>
<td>Dan</td>
</tr>
<tr>
<td></td>
<td>DNSSEC – Chain of Trust Live</td>
<td>5 mins</td>
<td>Wes</td>
</tr>
<tr>
<td>Real World Examples</td>
<td>A sample DNSSEC implementation (what it looks like, s/w etc). A simple guide to deployment.</td>
<td>10 mins</td>
<td>Russ</td>
</tr>
<tr>
<td></td>
<td>A guide to DNSSEC Deployment options: Technologies and vendors.</td>
<td>10 mins</td>
<td>Russ</td>
</tr>
<tr>
<td>Summary</td>
<td>Session Round up, hand out of materials, Thank you’s</td>
<td>2 mins</td>
<td>Dan</td>
</tr>
</tbody>
</table>
THE ORIGINS OF DNSSEC
5000 BC
This is Ugwina. She lives in a cave on the edge of the Grand Canyon...
This is Og. He lives in a cave on the other side of the Grand Canyon…
It's a long way down and a long way round. Ugwina and Og don't get to talk much...
On one of their rare visits, they notice the smoke coming from Og's fire.
...and soon they are chatting regularly using smoke signals
until one day, mischievous caveman Kaminsky moves in next door to Ug and starts sending smoke signals too...
Now Ugwina is really confused. She doesn't know which smoke to believe...
So Ugwina sets off down the canyon to try and sort out the mess...
Ugwina and Og consult the wise village elders. Caveman Diffie thinks that he might have a cunning idea...
And in a flash, jumps up and runs into Ug's cave...!
Right at the back, he finds a pile of strangely coloured sand that has only ever been found in Ug's cave...
And with a skip, he rushes out and throws some of the sand onto the fire. The smoke turns a magnificent blue...
Now Ugwina and Og can chat happily again, safe in the knowledge that nobody can interfere with their conversation...
Introduction to DNSSEC

| Dan York, Internet Society | ICANN 55 | March 2016
High level concept of DNS

- root
  - ... (indicated by a placeholder)
  - uk
    - co.uk
  - com
    - bigbank.com
  - ma
    - nic.ma
  - ... (indicated by a placeholder)
High level concept of DNS

• A resolver knows where the root-zone is
• Traverses the DNS hierarchy
• Each level refers the resolver to the next level
• Until the question has been answered
• The resolver caches all that information for future use.
High level concept of DNS

• There is no security
• Names are easily spoofed
• Caches are easily poisoned
A Skit/Play
...Ugwina, the resolver, chatting with Og, the server...
Ugwina, the resolver is confused. She doesn't know who the real Og is...
...Ugwina, the resolver, can verify that the real Og sends the message...
High level concept of DNS

- **root**
  - **uk**
    - **bigbank.com (www)**
  - **com**
  - **ma**
    - **bigbank.com (www)**
DNSSEC is the solution

• DNSSEC uses digital signatures to assure that information is correct and came from the right place.

• The keys and signatures to verify the information, is stored in the DNS as well.

• Since DNS is a lookup system, keys can simply be looked up, like any data.
High level concept of DNSSEC

• A resolver knows what the root-key is
• It builds a Chain of Trust:
  – Each level signs the key of the next level
  – Until the chain is complete
High level concept of DNSSEC

- ✔ root
- ✔ com
- ✗ bigbank.com (www)
- ✔ bigbank.com (www)
- ✗ ma
A Skit/Play
DNSSEC To The Rescue!
Example of Why You Need DNSSEC and a Simple Guide to Deployment

| Russ Mundy, Parsons | ICANN 55 | March 2016
Why Worry About DNS?

• Users think in terms of names
  – Applications primarily use DNS names
  – Internet uses network addresses to connect locations

• DNS provides the translation from names to network addresses

• Proper DNS functions required by essentially all Network Applications
  – If DNS doesn’t work right,
    ➔ the applications won’t get to the intended locations

russ.mundy@parsons.com
DNS Hijack Threat

• DNS attacks provide a way to divert users’ applications, e.g.,
  – Redirecting user applications to false locations to steal passwords or other sensitive information
  – Redirect to a man-in-the-middle location
    • See and copy an entire session: Web, email, IM, etc.

• Multiple DNS hijack tools available on the Internet
  – Some University courses have required students to write DNS hijack software as a class assignment!

russ.mundy@parsons.com
How Can DNSSEC Help?

• DNSSEC can assure users they are reaching the right location
  – DNSSEC provides cryptographic information that can be used to verify that DNS information:
    • came from the proper source and
    • it was not changed enroute

• Hijack example will show DNSSEC preventing redirection of a web application
  – Web site tailored for effective use of DNSSEC and a web browser that uses DNSSEC

russ.mundy@parsons.com
Normal DNS & Web Exchange

1. Query: www.ab.org?

2. Query: www.ab.org?

3. www.ab.org=192.168.2.80

4. 10.1.1.1

5. "INTERNET"

Auth NS
ns1.ab.org
192.168.2.252

Web Server
www.ab.org
192.168.2.80

Recursive NS
10.2.2.2
10.1.1.253
10.1.1.1
10.2.2.1

"Joe User"
192.168.1.3
.org shares Comcast DNSSEC advice for ISPs

Posted by Graveline in Uncategorized on June 29, 2010

In DNSSEC Deployment Among ISPs: The Why, How and What, Lauren Price of .org interviews the DNS gurus at Comcast to see what they’ve learned and what advice they would give other ISPs considering DNSSEC deployment. The post answers such questions as “What is the benefit to an end user when an ISP supports DNSSEC?” and “What advice would you give other ISPs?” Specific lessons from Comcast’s testing of DNSSEC are included.

Rome DNSSEC awareness and planning workshop this week

Posted by Graveline in Uncategorized on June 28, 2010

Members of the DNSSEC Deployment Coordination Initiative will move from the ICANN meeting in Brussels to a special two-day DNSSEC Awareness and Planning Workshop in Rome on June 30 and 31. The workshop, to be held at the Global Cyber Security Center as its first major initiative, intends to “promote the adoption of DNSSEC globally, with a focus on key sectors in Italy and in neighboring countries in Europe, the Middle East and North Africa.” Speakers will share experiences from Italy, Sweden, the United Kingdom, the Czech Republic, Portugal, the
DNS Hijacked Web Exchange

Auth NS
ns1.ab.org
192.168.2.252

Web Server
www.ab.org
192.168.2.80

Recursive NS
10.2.2.2

Redirected Website

Query: www.ab.org?

192.168.2.1

“INTERNET”

10.1.1.1

10.1.1.2

10.2.2.2

10.2.2.1

10.1.1.253

“Joe User”
192.168.1.3

www.ab.org=10.2.2.1

www.ab.org=192.168.2.80

Dr Evil Hijacker
192.168.1.99

www.ab.org=192.168.2.80
Attempted DNS Hijacked Web Exchange Stopped by DNSSEC

Dr Evil Hijacker
192.168.1.99

Redirected Website

“INTERNET”

Auth NS
ns1.ab.org
192.168.2.252

Web Server
www.ab.org
192.168.2.80

Recursive NS
10.2.2.2
10.1.1.2
10.1.1.253
10.1.1.1
10.2.2.1

Query: www.ab.org?

“Joe User”
192.168.1.3
www.ab.org=10.2.2.1

DNSSEC Validation stops ‘False’ answer

Query: www.ab.org?

30 June 2010

192.168.1.1
192.168.2.1
192.168.2.80
192.168.2.1
192.168.2.252
192.168.1.99
WWW.ab.org=192.168.2.80
10.2.2.2
10.1.1.2
10.1.1.253
10.1.1.1
10.2.2.1

russ.mundy@parsons.com
1 Webpage = Multiple DNS Name Resolutions
DNS Basic Functions

• DNS provides the translation from names to network addresses
• Get the right DNS content to Internet users

➢ IT’S **DNS ZONE DATA THAT MATTERS**!
I need to have a WWW record

Add

Zone Data

publish

Authoritative Server

Recursive Server

1. Request www

2. Request www

3. www is 1.2.3.4

4. www is 1.2.3.4

Client

“Joe User”

russ.mundy@parsons.com
DNSSEC Implementation

Samples

• DNSSEC implementation depends upon & is mostly driven by an activity’s DNS functions
  – DNS is made up of many parts, e.g., name server operators, applications users, name holders (“owners”), DNS provisioning
  – Activities with large, complex DNS functions are more likely to have more complex DNSSEC implementation activities
    • Also more likely to have ‘DNS knowledgeable’ staff
DNSSEC Implementation
Samples, Continued

• DNS size and complexity examples:
  – Registry responsible for a large TLD operation, e.g., .com
  – Substantial enterprise with many components with many geographic locations, e.g., hp.com
  – Internet-based businesses with a number of business critical zones, e.g., www.verisign.com
  – Activities with non-critical DNS zones, e.g., net-snmp.org
  – Proverbial Internet end users (all of us here)
How Does DNSSEC Fit?

- DNSSEC required to thwart attacks on DNS CONTENT
  - DNS attacks used to attack Internet users applications

➤ Protect **DNS ZONE DATA** as much as (or more than) any DNSSEC information
  ➤ Including DNSSEC private keys!!
Simple Addition of DNSSEC
(there are both much more and less complex setups than this)

I need to have a signed WWW record

Add
Zone Data

sign
Signed Data

publish
Authoritative Server

new

1. Request www
2. www is 1.2.3.4
3. www is 1.2.3.4

4. www is 1.2.3.4

Client

“Joe User”

russ.mundy@parsons.com
General Principle:

• If an activity does a lot with their DNS functions and operations then they probably will want to do a lot with the associated DNSSEC pieces;
• If an activity does little or nothing with their DNS functions and operations then they probably will do little or nothing directly with their DNSSEC elements but **Require DNSSEC** from their suppliers

russ.mundy@parsons.com
Thank You and Questions